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Abstract

We study the complexity and scale of the supergranular network across
the 23rd solar cycle, using the Ca II K digitized intensitygrams from the
Kodaikanal Solar Observatory (KSO). Enhancing our previous data and
refining our data analysis, we study supergranular fractal dimension as
a function of cell size. We find that across the cycle phases, the cells
show a bifractal behavior, with approximately half the larger cells in the
studied scale range showing a slightly greater fractal dimension than the
smaller cells. We also study the discrepancy between supergranular scale
as determined by direct inspection methods (around 17 Mm) and auto-
correlation (around 30 Mm), and attribute this to a preferential selection
of well defined cells in the former case.

1 Introduction

Supergranulation, believed to be a convective phenomenon, is a solar surface
network of cellular horizontal velocity pattern with a typical size of 30 Mm and
a lifetime of one day. Supergranulation is believed to be feature of the convection
in Sun-like stars. Typically, it is most pronounced in the Ca II K 3934 Å line
(Chatzistergos et al., 2022), but can also be deduced from magnetograms or
Dopplergrams (Simon and Leighton 1964; Singh and Bappu 1981; Hagenaar,
Schrijver et al. 1997; Gontikakis, Peter and Dara).

Supergranular scales may be extracted by direct inspection (Sowmya et al.,
2022; Rajani et al., 2022), or by automated techniques such as autocorrelation
(Simon and Leighton, 1964; Srikanth et al., 2000; Badalyan et al., 2008), which
is related to the width of the network boundary (Patsourakos et al., 1999). The
magnetic fields hemmed in by supergranular horizontal motion to the boundaries
are understood to rise above and form a magnetic canopy that expands right
into the coronal layer (Reeves, 1976; Gabriel, 1976; Patsourakos et al., 1999).

Interestingly, the length scales of the transition region as observed using
the Coronal Diagnostic Spectrometer (CDS) instrument of Solar and Helio-
spheric Observatory (SOHO) show large asymmetry (Harrison et al., 1995). The
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magnetic fields of the Solar atmopshere may lead to turbulence, as indicated
by Hinode experiment (Centeno et al., 2007; Lites et al., 2008; Suárez et al.,
2008; Schüssler and Vögler, 2008), suggestive of a small-scale turbulent dynamo
in the photosphere (Boldyrev and Cattaneo, 2004; Vögler and Schüssler, 2007;
Graham et al., 2009).

Fractal dimension D provides a mathematical tool to quantify the complex-
ity of geometric patterns, via a measure of the self-similarity in the pattern
(Hutchinson, 1981). In the context of Solar supergranulation, D provides a
window on the magneto-convective turbulence in the Solar plasma, a point we
elaborate on in the final Section. Given a plot of supergranular area A and
perimeter P , the dimension can be read off according to

A ∝ P 2/D (1)

A regular cellular pattern corresponds to D = 1, while a frazzled, irregular
one that is space-filling corresponds to D > 1. In the context of Solar surface
phenomena, Muller et al. (1987) reported a fractal dimension of Solar granu-
lation of D = 1.25 and D ≈ 2 for smaller and larger granules, respectively.
Paniveni et al. (2005) reported a supergranular fractal dimension of D ≈ 1.24
for the Solar and Heliospheric Observatory (SoHO) dopplergrams, which was
the basis of subsequent analysis of the Solar magneto-convective turbulence
(Paniveni et al., 2011).

According to the Kolmogorov hypothesis applied to convection in a turbulent
plasma, the horizontal velocity of a convective cell scales as vh ∝ L

1
3 , where vh is

the horizontal speed and L the size of the convective cell (Krishan et al., 2002).
A direct relationship between magnetic activity and cell fractal dimension has
been reported Nesme-Ribes et al. (1996); Rincon and Rieutord (2018). On the
other hand, the interplay with the Solar cycle phase appears to modify the
picture. Specifically, Chatterjee et al. (2017) report that whereas active-region
supergranular fractal dimension is lower than that for quiet regions, the former
cells may have lower fractal dimension during the active phase, and the latter
supergranules contrariwise.

These considerations suggest that the interplay of Solar cycle phase, mag-
netic activity and the supergranular plasma outflow contribute to determining
the fractal dimension, scale or any other cell parameter. Here, one concerns the
relation between supergranular size and fractal dimension over the course of the
Solar cycle. This was partialy addressed in our previous work (Rajani et al.,
2022), employing the method of analysis used by Paniveni et al. (2005). The
above work by Rajani et al. (2022) is limited to the quiescent region, and qual-
itatively indicated that there seemed to be a variation of the fractal dimension
as a function of scale. This issue is now taken up in quantitative detail in the
present work, where we report a bifractal behavior of supergranulation.

The remaining article is structured as follows. In Section 2, we introduce
the data and analytical tools used. Our result on the bifractal nature of su-
pergranulation is reported in Section 3, where for brevity we only present the
detailed data for active phase. Here we also the discuss the discrepancy on cell
size as estimated by the autocorrelation and direct image inspection methods.
Finally we discuss in Section 4 a simply model based on Kolmogorov theory for
the observed bifractal behavior, and also present our conclusions.
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2 Data and Analysis

Data from the 23rd solar cycle (August 1996 – December 2008) at KSO was
employed for the analysis here. The KSO houses a K-line spectroheliograph with
a spectral dispersion of 7 Åmm−1 near 3934 Å. It uses a 6 cm image obtained out
of a Cooke photovisual triplet of 30 cm . A 46-cm diameter Foucault siderostat
reflects sunlight onto a lens of 30 cm. Exit slits centered at K 232 admit light
at 0.5 A. The images are digitized into strips that run parallel to the Solar
equator. The image resolution is 2′′, twice the granular scale. The data is
time-averaged over a 10-minute window in order to wash out any signatures of
the 5-minute oscillations (Paniveni et al., 2004). The contribution of granular
velocity is lowered to a good extent by virtue of the spatial resolution and time
averaging. Likewise, the signal due to p-mode vibrations is lowered through
time averaging (Paniveni et al., 2005).

The activity level determines the extent of magnetic field dispersal, and
thereby also affects the properties of the supergranular cell network, specifically
its degree of irregularity, as quantified using a Mandelbrot fractal analysis. We
expect such properties to continuously vary across the cycle. For our data,
this behavior can be broadly captured by dividing the cycle into three phases–
peak, minimum and intermediate. In the considered cycle, we identify three
phases: the peak phase (period 2000–2002), which features large sunspots and
other signatures of high activity, such as Solar flare and coronal mass ejections;
the minimum phases on either side (periods 1996–1997 and 2005–2007), during
which such manifestations of magnetic activity are minimal, and the remaining
period corresponding to the intermediate phase.

In the present work, we analyzed the multifractal nature of supergranula-
tion during different epochs of the Solar cycle based on the above mentioned
activity levels. We quantitatively find a scale-dependent multifractal behavior,
by investigating an idea proposed earlier by Rajani et al. (2022), essentially by
extending and refining the data analysis there . Specifically, there is a small
difference between the fractal dimension for smaller and larger cells in a given
phase, and furthermore, this trend varies with the phases of the solar cycle. Ex-
amining the cell’s perimeter-area relationship we derive the fractal dimension D
via the relationship of Eq. (1), building on our previous work (Sowmya et al.,
2022).

Another related investigation concerns the size distribution of supergranular
cells, wherein we discuss the marked difference between cell sizes obtained by a
tessellation technique or direct visual inspection of well defined cells, typically
16–18 Mm (Hagenaar et al., 1997; Rajani et al., 2022) vs automated methods
such as a autocorrelation, typically around 30 Mm (Srikanth et al., 2000).

For the autocorrelation analysis, assuming that the network characteristics
do not change significantly during a three-minute period, we have selected the
central window to minimize the impact of foreshortening effects.. Also, the
low-latitude location of our region of interest means that the horizontal-vertical
asymmetry in supergranular length scale at higher latitudes (Raju, 2020) does
not affect us. From selected images, rectangular windows of size (10 × 120)
pixels were taken in the central meridian for which the two-dimensional auto-
correlation function as a function of lag in the equatorial direction was calculated
using Matlab. The length scale is estimated as twice the halfwidth of the auto-
correlation function. To improve statistical robustness, the process was repeated
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Sl.No. phases Point of in-

flection

Fractal di-

mension

weighted

average

goodness-

of-fit

1 Minimum A≤ 2.4 1.6 0.973
A≥ 2.4 1.68

2 Intermediate A≤ 2.6 1.3 0.976
A≥ 2.6 1.6

3 Peak A≤ 2.25 1.0 0.982
A≥ 2.25 1.2

Table 1: Bifractal behavior of supergranulation based on the visual inspection
analysis, showing a differentiation between smaller and larger supergranules in
each activity phase. The inflection point shows a slight phase dependence, being
largest for the intermediate phase.

for 20 images in each year of the cycle, and mean and the standard deviation of
the length scales were obtained for error analysis purposes.

3 Results

Our result indicates a rather broad spread of length scales around a characteris-
tic scale. In each activity level, we find the existence of a ‘critical’ area at which
a change in the geometrical properties, characterized by the fractal dimension,
occurs. On the area vs perimeter plot, this corresponds to a point of inflection
in the slope. The plot for the minimum phase is given in Figure 1). Similar plots
are obtained for the other two cycle-phases. The results for all three phases is
given in Table 1.

This point is determined carefully by sampling different divisions of the data
set, to ensure that the selected two line segments correspond to maximal fits to
the data points in the segment. The weighted average of the goodness of fit of
the two segments is given in the last column of Table 1. The obtained fractal
dimension data supports a bifractal structure for all three phases. The point
of inflection is determined by evaluating the point that maximizes the weighted
goodness of fit.

Calcium network diameters are shown to be smaller by 5% at solar maximum
than at minimum (Singh and Bappu, 1981).The average cell size is larger than
the earlier reported value of 17–23 Mm derived by visual inspection, though sizes
obtained by autocorrelation can indeed be larger (Singh and Bappu, 1981).According
to the turbulent convection theory. The distance between the barycentre of adja-
cent cells is described by a Gaussian distribution characterized by mean intercell
distance of 24Mm and a FWHM of 5Mm (Berrilli et al., 1997).

In this work, we determined length-scales employing both the autocorrelation
and visual inspection methods. A typical autocorrelation function plot for our
data is depicted in Figure 2. For the latter method, following the procedure
described by Rajani et al. (2022); Sowmya et al. (2022), we pick up well defined
small cells to delineate adjacent supergranular cells and analyze the intercellular
distance between consecutive cells. By this method, we obtain scales that can
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Figure 1: Plot of log(A) v/s log(P ) for supergranules in a quiet region of the
Sun during the minimum phase of Solar cycle 23. The point of inflection where
the fractal dimension increases slightly is around logA = 2.4 Mm2. For details
pertaining to all three phases, refer to Table 1.

well smaller than 20 Mm, as we reported in the above works. This is also
consistent with the scales reported by Hagenaar et al. (1997). Thus, for the same
data, we find a discrepancy between the visual inspection and autocorrelation
technique in finding the cell size.

4 Discussions and conclusions

The phase-dependence of supergranulation scales and fractal dimension were
studied using the KSO Ca II K images of the 23rd cycle (years 1997 to 2007),
building on earlier work (Rajani et al., 2022). Both show a dependence on the
solar cycle activity level.

Scales were estimated using both autocorrelation and visual inspection. The
relatively larger value of the former is attributed to a possible selection bias
towards smaller cells, in the latter method. Since only those cells with well
defined boundaries were chosen, and usually larger cells have boundaries that
more irregular and sometimes broken, whereas the autocorrelation method is
indifferent to such shape factors, this could explain the possible bias. Here we
may note that the autocorrelation technique provides an average scale, rather
than a realistic one (Srikanth et al., 1999), that too, possibly an overestimate
(Singh and Bappu, 1981).

In an earlier work by two of the present authors on Solar dopplergrams
(Krishan et al., 2002), it was reported that the the horizontal speed v of the
supergranular outflow depends on the length scale L according to the observed
function v ∼ L1/3. This is consistent with the application of Kolmogorov theory
for a turbulent medium to supergranular convection. Accordingly, assuming that
the plasma is a turbulent magneto-convective medium, the fractal dimension D
can serve as a tool to probe properties of the turbulent magneto-convection in
the Solar plasma associated with supergranuation. Specifically, we can deter-
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Figure 2: Plot of Autocorrelation function against lag which gives the length
scale of 29 Mm.

mine D for different isosurfaces, i.e., surfaces of constant temperature, concen-
tration or pressure (Mandelbrot, 1975). It can be shown as a consequence of
the Kolmogorov energy spectrum, k−5/3, that the variances of temperature θ
and pressure P go as 〈θ〉 ∼ r2/3 and 〈P 〉 ∼ r4/3 as a function of distance r
(Paniveni et al., 2010).

For the isosurface of a quantity X , the fractal dimension is given by DX =
DEuclid − 1

2
× (Exponent of 〈X〉), where the angles indicate variance. For an

isothermal supergranular boundary, we thus have the fractal dimension Dθ =
2− 1

3
≈ 1.67, whereas in the isobaric case, we have DP = 2− 2

3
≈ 1.3.

In this light, the data in Table 1 bears out the following features that may
underlie the bifractal behavior: in the intermediate phase, the isosurface prop-
erty shows a marked dependence on scale. Specifically, the boundary of larger
cells shows a more isothermal character, whilst that of smaller cells shows a more
isobaric character. On the other hand, although the bifractality can be well dis-
cerned in the minimum and peak phases, still the former is largely consistent
with isothermal cell boundaries, and the latter phase with isobaric boundaries.

If we idealize this dependence of the fractal dimension on the phase ϕ of
the Solar cycle as an approximately linear function, then we may propose the
following:

D = α+ βϕ, (2)

where α ≈ 4

3
and β ≈ 2

3
. Here the cycle is assumed to evolve from the minimum

phase (ϕ = − 1

2
), through the intermediate (ϕ = 0), on to the maximum phase

(ϕ = + 1

2
).

The fractal dimension dependence on cycle phase has been reported earlier,
e.g., Rajani et al. (2022); Chatterjee et al. (2017). The bifractal behavior may

arise from the interplay of the magnetic pressure
B2

plasma

2µ0
and the plasma kinetic

energy density in the supergranules. In smaller supergranules, which have lower
lifetimes (Srikanth et al., 1999; Sowmya et al., 2022), the magnetic upflow at
the supergranular center does not have time to dissipate, letting the magnetic
pressure play a more dominant role in relation the plasma kinetic energy density
than in larger cells. Thus the supergranular boundary shows a more isobaric
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property in the smaller cells. By contrast, in larger cells, with longer lifetimes,
the plasma kinetic energy density dominates, so that isothermal property is
more plausible for the boundary.

Applying the Kolmogorov hypothesis for turbulent media to Solar convec-
tion, we anticipate that the horizontal velocity vh of supergranular cells depends
on its size L according to

vh = ǫ1/3L1/3, (3)

where ǫ is the plasma injection rate of the convective cell Sowmya et al. (2022).
Letting T ≡ L/vh, the length scale fluctuation δL, which is a measure of the
fractal dimension, and velocity fluctuation vh are related by ≡ Tδvh

δL = ǫ−1/3L2/3δvh. (4)

This implies that the fractal dimension should be smaller in more active phase
in accordance with the data of Table 1. To give specific numbers, we may let
ǫ = 2.89 × 10−6 km2 s−3 and δvh = 74 m/s (Paniveni et al., 2004). Choosing
L ≈ 35, 34.5 and 33.5 Mm for the minimum, intermediate and peak phases,
we estimate via Eq. (4) that δL ≈ 5.55, 5.50 and 5.39 Mm, respectively. This
behavior may be attributed to the fact, indicated by a number of works, that
magnetic activity anticorrelates with cell size (Paniveni et al., 2010), which may
be attributed to the shrinking effect due to magnetic fields (Singh and Bappu,
1981; Meunier et al., 2008).

Eq. (4) suggests that the bifractal behavior may be because the injection rate
and/or the velocity fluctuation shows an increase beyond the point of inflection.
Future studies should verify the inflectional behavior, and if verified, shed light
on how the cell variables ǫ−1/3 and δvh themselves depend on L.
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